If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30=-16t^2+24t+30
We move all terms to the left:
30-(-16t^2+24t+30)=0
We get rid of parentheses
16t^2-24t-30+30=0
We add all the numbers together, and all the variables
16t^2-24t=0
a = 16; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·16·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*16}=\frac{48}{32} =1+1/2 $
| -9+6d=9+4d | | -5x-4=10x-19 | | 150/x=90/100 | | -5h=-3h-10 | | 2n2–6n=8 | | (9+x)-(12+x)=180 | | 2x=(3x+50)+90=180 | | p*6=-14 | | -7c-9=-6c | | 8x-5=16+x | | -w^2+20w-90=0 | | 60+14x=158 | | 5=1.6x+1. | | 60+14x=150 | | (12+x)+(9+x)=180 | | -7-6=2x+12 | | 6+3g=4g | | 10+5r=7r | | 46+(x-12)+x=180 | | 0.03g=6 | | 15x-70=50 | | 3+1=-4(9x-1) | | 46+(x-12)=180 | | 5(2y−2)=2(y+1)+20 | | 2/10x-4/10=1/10+6/10 | | 109+49=x | | 8x+2(70+60)=180 | | 3x=(x+14)+64 | | 15x+65=185 | | 12y-3=9 | | =p+53 | | 24x+9=17x-15 |